Most cancers cells rely on environmental lipids for proliferation when electron acceptors are restricted

Home science Environment Most cancers cells rely on environmental lipids for proliferation when electron acceptors are restricted
Most cancers cells rely on environmental lipids for proliferation when electron acceptors are restricted
Most cancers cells rely on environmental lipids for proliferation when electron acceptors are restricted

  • Hosios, A. M. et al. Amino acids moderately than glucose account for almost all of cell mass in proliferating mammalian cells. Dev. Cell 36, 540–549 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao, C.-H. et al. Exogenous fatty acids are the popular supply of membrane lipids in proliferating fibroblasts. Cell Chem. Biol. 23, 483–493 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jain, M. et al. Metabolite profiling identifies a key position for glycine in fast most cancers cell proliferation. Science 336, 1040 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Damaraju, V. L. et al. Nucleoside anticancer medicine: the position of nucleoside transporters in resistance to most cancers chemotherapy. Oncogene 22, 7524–7536 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Muir, A., Danai, L. V. & Vander Heiden, M. G. Microenvironmental regulation of most cancers cell metabolism: implications for experimental design and translational research. Dis. Fashions Mech. 11, dmm035758–12 (2018).

    Google Scholar 

  • Sullivan, M. R. et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. Elife 8, e44235 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vaupel, P., Kallinowski, F. & Okunieff, P. Blood stream, oxygen and nutrient provide, and metabolic microenvironment of human tumors: a overview. Most cancers Res. 49, 6449 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Eales, Okay. L., Hollinshead, Okay. E. R. & Tennant, D. A. Hypoxia and metabolic adaptation of most cancers cells. Oncogenesis 5, e190–8 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, J. et al. Heterogeneity of tumor-induced gene expression modifications within the human metabolic community. Nat. Biotechnol. 31, 522–529 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gui, D. Y. et al. Atmosphere dictates dependence on mitochondrial advanced I for NAD+ and aspartate Manufacturing and determines most cancers cell sensitivity to metformin. Cell Metab. 24, 716–727 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sullivan, L. B. et al. Supporting aspartate biosynthesis is a vital perform of respiration in proliferating cells. Cell 162, 552–563 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sullivan, L. B. et al. Aspartate is an endogenous metabolic limitation for tumour progress. Nat. Cell Biol. 20, 1–12 (2018).

    Google Scholar 

  • Birsoy, Okay. et al. A vital position of the mitochondrial electron transport chain in cell proliferation is to allow aspartate synthesis. Cell 162, 540–551 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garcia-Bermudez, J. et al. Aspartate is a limiting metabolite for most cancers cell proliferation beneath hypoxia and in tumours. Nat. Cell Biol. 20, 1–12 (2018).

    Google Scholar 

  • Fernandez-de-Cossio-Diaz, J. & Vazquez, A. Limits of cardio metabolism in most cancers cells. Sci. Rep. 7, 13488 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Titov, D. V. et al. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 352, 231–235 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diehl, F. F., Lewis, C. A., Fiske, B. P. & Vander Heiden, M. G. Mobile redox state constrains serine synthesis and nucleotide manufacturing to influence cell proliferation. Nat. Metab. 1, 861–867 (2019).

  • Bao, X. R. et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. Elife 5, e10575 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Murphy, J. P. et al. The NAD+ salvage pathway helps PHGDH-driven serine biosynthesis. Cell Rep. 24, 2381–2391 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, W. et al. Polyunsaturated fatty acid desaturation is a mechanism for glycolytic NAD+ recycling. Cell Metab. 1–42 (2019).

  • Worth, N. C. & Stevens, L. Fundamentals of Enzymology (Oxford College Press, 2000).

  • Los, D. A. & Murata, N. Construction and expression of fatty acid desaturases. Biochim. Biophys. Acta 1394, 3–15 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Park, S. H. et al. Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J. Appl. Physiol. 92, 2475–2482 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Schulz, H. Beta oxidation of fatty acids. Biochim. Biophys. Acta 1081, 109–120 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Kamphorst, J. J. et al. Hypoxic and Ras-transformed cells assist progress by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl Acad. Sci. USA 110, 8882 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ackerman, D. et al. Triglycerides promote lipid homeostasis throughout hypoxic stress by balancing fatty acid saturation. Cell Rep. 24, 2596–2605 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bensaad, Okay. et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell progress and survival after hypoxia-reoxygenation. Cell Rep. 9, 349–365 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Jain, I. H. et al. Genetic display for cell health in excessive or low oxygen highlights mitochondrial and lipid metabolism. Cell 181, 716–727 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luengo, A. et al. Elevated demand for NAD+ relative to ATP drives cardio glycolysis. Mol. Cell 81, 691–707 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Harris, A. L. Hypoxia—a key regulatory think about tumour progress. Nat. Rev. Most cancers 2, 38–47 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Clever, D. R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to assist cell progress and viability. Proc. Natl Acad. Sci. USA 108, 19611–19616 (2011).

    PubMed Central 

    Google Scholar 

  • Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis beneath hypoxia. Nature 481, 380–384 (2012).

    CAS 

    Google Scholar 

  • Mullen, A. R. et al. Reductive carboxylation helps progress in tumour cells with faulty mitochondria. Nature 481, 385–388 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dupuy, F. et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast most cancers. Cell Metab. 22, 577–589 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Duarte, N. C. et al. World reconstruction of the human metabolic community based mostly on genomic and bibliomic knowledge. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007).

    PubMed Central 

    Google Scholar 

  • Orth, J. D., Thiele, I. & Palsson, B. Ø. What’s flux stability evaluation? Nat. Biotechnol. 28, 245–248 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jerby, L., Shlomi, T. & Ruppin, E. Computational reconstruction of tissue‐particular metabolic fashions: utility to human liver metabolism. Mol. Syst. Biol. 6, 401 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zielinski, D. C. et al. Programs biology evaluation of drivers underlying hallmarks of most cancers cell metabolism. Sci. Rep. 7, 41241 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saggerson, E. D. The regulation of glyceride synthesis in remoted white-fat cells. The consequences of acetate, pyruvate, lactate, palmitate, electron-acceptors, uncoupling brokers and oligomycin. Biochem. J. 128, 1069–1078 (1972).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clever, E. M. Jr & Ball, E. G. Malic enzyme and lipogenesis. Proc. Natl Acad. Sci. USA 52, 1255–1263 (1964).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, L. et al. Malic enzyme tracers reveal hypoxia-induced swap in adipocyte NADPH pathway utilization. Nat. Chem. Biol. 12, 345–352 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hosios, A. M. & Vander Heiden, M. G. The redox necessities of proliferating mammalian cells. J. Biol. Chem. 293, 7490–7498 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DeBerardinis, R. J. et al. Past cardio glycolysis: remodeled cells can interact in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santos, C. R. & Schulze, A. Lipid metabolism in most cancers. FEBS J. 279, 2610–2623 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Hosios, A., Li, Z., Lien, E. & Vander Heiden, M. Preparation of lipid-stripped serum for the research of lipid metabolism in cell tradition. Bio. Protoc. 8, e2876 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gameiro, P. A. et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate ranges and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab. 17, 372–385 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaplon, J. et al. A key position for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109–112 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Linn, T. C., Pettit, F. H. & Reed, L. J. α-keto acid dehydrogenase complexes, X. Regulation of the exercise of pyruvate dehydrogenase advanced from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc. Natl Acad. Sci. USA 62, 234–241 (1969).

    PubMed Central 

    Google Scholar 

  • Schell, J. C. et al. A task for the mitochondrial pyruvate provider as a repressor of the Warburg impact and colon most cancers cell progress. Mol. Cell 56, 400–413 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vacanti, N. M. et al. Regulation of substrate utilization by the mitochondrial pyruvate provider. Mol. Cell 56, 425–435 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, C. et al. Glutamine oxidation maintains the TCA cycle and cell survival throughout impaired mitochondrial pyruvate transport. Mol. Cell 56, 414–424 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bricker, D. Okay. et al. A mitochondrial pyruvate provider required for pyruvate uptake in yeast, Drosophila and people. Science 337, 96–100 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Herzig, S. et al. Identification and practical expression of the mitochondrial pyruvate provider. Science 337, 93–96 (2012).

    Google Scholar 

  • Fendt, S.-M. et al. Reductive glutamine metabolism is a perform of the α-ketoglutarate-to-citrate ratio in cells. Nat. Commun. 4, 2236 (2013).

    PubMed 

    Google Scholar 

  • Owen, M. R., Doran, E. & Halestrap, A. P. Proof that metformin exerts its anti-diabetic results via inhibition of advanced 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bücher, T. et al. State of oxidation–discount and state of binding within the cytosolic NADH-system as disclosed by equilibration with extracellular lactate/pyruvate in hemoglobin-free perfused rat liver. Eur. J. Biochem. 27, 301–317 (1972).

    PubMed 

    Google Scholar 

  • Hung, Y. P., Albeck, J. G., Tantama, M. & Yellen, G. Imaging cytosolic NADH–NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metab. 14, 545–554 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell progress. Most cancers Cell 8, 311–321 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hui, S. et al. Glucose feeds the TCA cycle through circulating lactate. Nature 551, 115–118 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, Y. et al. In vivo monitoring of mobile power metabolism utilizing SoNar, a extremely responsive sensor for NAD+/NADH redox state. Nat. Protoc. 11, 1345–1359 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Garcia, D. & Shaw, R. J. AMPK: mechanisms of mobile power sensing and restoration of metabolic stability. Mol. Cell 66, 789–800 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Latasa, M. J., Moon, Y. S., Kim, Okay. H. & Sul, H. S. Dietary regulation of the fatty acid synthase promoter in vivo: sterol regulatory factor binding protein features via an upstream area containing a sterol regulatory factor. Proc. Natl Acad. Sci. USA 97, 10619–10624 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewis, C. A. et al. SREBP maintains lipid biosynthesis and viability of most cancers cells beneath lipid- and oxygen-deprived situations and defines a gene signature related to poor survival in glioblastoma multiforme. Oncogene 34, 5128–5140 (2015).

  • Comerford, S. A. et al. Acetate dependence of tumors. Cell 159, 1591–1602 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mashimo, T. et al. Acetate Is a bioenergetic substrate for human glioblastoma and mind metastases. Cell 159, 1603–1614 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schug, Z. T. et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains most cancers cell progress beneath metabolic stress. Most cancers Cell 27, 57–71 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bulusu, V. et al. Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents lack of histone acetylation throughout oxygen and serum limitation. Cell Rep. 18, 647–658 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. et al. Acetate manufacturing from glucose and coupling to mitochondrial metabolism in mammals. Cell 175, 502–513 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Röhrig, F. & Schulze, A. The multifaceted roles of fatty acid synthesis in most cancers. Nat. Rev. Most cancers 16, 732–749 (2016).

    PubMed 

    Google Scholar 

  • Jones, M. E., Lipmann, F., Hilz, H. & Lynen, F. On the enzymatic mechanism of coenzyme A acetylation with adenosine triphosphate and acetate. J. Am. Chem. Soc. 75, 3285–3286 (1953).

    CAS 

    Google Scholar 

  • Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mense, S. M. et al. Gene expression profiling reveals the profound upregulation of hypoxia-responsive genes in major human astrocytes. Physiol. Genomics 25, 435–449 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the entire program of ldl cholesterol and fatty acid synthesis within the liver. J. Clin. Make investments. 109, 1125–1131 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davidson, S. M. et al. Atmosphere impacts the metabolic dependencies of Ras-driven non-small cell lung most cancers. Cell Metab. 23, 517–528 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davidson, S. M. et al. Direct proof for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat. Med. 23, 235–241 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Sullivan, M. R. et al. Elevated serine synthesis gives a bonus for tumors arising in tissues the place serine ranges are limiting. Cell Metab. 29, 1410–1421 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Savino, A. M. et al. Metabolic adaptation of acute lymphoblastic leukemia to the central nervous system microenvironment is dependent upon stearoyl-CoA desaturase. Nat. Most cancers 1, 998–1009 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, X. et al. A metastasis map of human most cancers cell traces. Nature 588, 331–336 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Summons, R. E., Bradley, A. S., Jahnke, L. L. & Waldbauer, J. R. Steroids, triterpenoids and molecular oxygen. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 951–968 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maddocks, O. D. Okay. et al. Modulating the therapeutic response of tumours to dietary serine and glycine hunger. Nature 544, 372–376 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Li, L. et al. Identification of DHODH as a therapeutic goal in small-cell lung most cancers. Sci. Transl. Med. 11, eaaw7852 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sousa, C. M. et al. Pancreatic stellate cells assist tumour metabolism via autophagic alanine secretion. Nature 536, 479–483 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parker, S. J. et al. Selective alanine transporter utilization creates a targetable metabolic area of interest in pancreatic most cancers. Most cancers Discov. 10, 1018–1037 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hsueh, E. C. et al. Deprivation of arginine by recombinant human arginase in prostate most cancers cells. J. Hematol. Oncol. 5, 17 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published.